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In this paper we present a theoretical analysis of shear induced melting in smectic A liquid 
crystals. We have performed a detailed numerical analysis and find that for a range of param- 
eter values a first order transition, from a supersheared state to a more relaxed state, is period- 
ically encountered as the total shear is increased. This first order transition involves the 
melting and reformation of the smectic layers. In this paper we present a summary of this 
analysis while a more detailed analysis, including analytic expressions for certain critical 
quantities, is presented elsewhere. 

Keywords: theory; smectic A; smectic layer melting; shear deformation 

I NTR.0 D UCTION 

In the smectic A p11a.e there exists one-dimensional positional ordering in 
the form of a periodic molecular density function, which forms a layered 
st.riirtiire[']. In equilibrium, the unconstrained liquid crystal layers are uni- 
formly separated by a distanre 2* /q ,  where q is the preferred wave number 
of th r  density fluctuations. However. in  the presence of distorting forces, 
the layer structure can bc significantly different. In this pa.per we discuss 
one situation in  which this layer structure may be distorted. 

We rorisider a smectic A liquid crystal sample initially in thc bookshelf 
geometry. in  which the director is aligned in the same uniform direction on 
each surfare of a cell (Fig. I ) .  Although this bookshelf configuration may 
he dist.iirbed hy external factors such as an electric field. applied stresscs 
arid alterations in the temperature. such perturbations typically do not alter 
the smectir layer configuration close to the surfaces. Cagnori and Dura.ndLz] 
have experimentally investigated this interaction between the cell surfaces 
and thr  smectic layers. In a cell filled with a smectic A liquid crystal, 
one wall was moved laterally with respcct to the other and they found 
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180/[424] N. J. MOTTRAM et al. 

Figure 1: Cell configuration: Smectic A material is sandwiched between 
glass plates at z = 1 and z = 0 where the director is aligned homogeneously. 
The shear force applied to  the upper glass plate induces layer distortion. 

periodic discontinuities superimposed on a monotonic, background stress, 
which were interpreted as layers slipping with respect to  the walls. These 
results enabled Cagnon and Durand to estimate the energy associated with 
the surface-memory-induced layer anchoring at the walls. 

This paper aims to  examine the general question of the interplay 
between the energetically favorable bookshelf geometry and an applied shear 
stress which distorts it. Elston and Towleri31 have previously shown that 
the presence of a large inter-wall shear can lead to  a significant reduction in 
the smectic order parameter in the middle of the cell, and sufficiently large 
shear can, under some circumstances, destabilize the deformed bookshelf 
geometry. In this paper we report on calculations which extend this an* 
lysis to  find a complex structure of stable, metastable and unstable states 
and describe the associated transitions between them. A more complete 
account of this work is presented elsewhere"]. 

PHYSICAL UNDERSTANDING 

In this section we give a brief overview of the physics involved in the model 
we consider. For simplicity we suppose that the layer anchoring is infinite 
and thus in the presence of shear the layers are forced, initially, to follow 
the moving surfaces (Fig. 1). 

We denote the smectic order parameter by the complex variablei61, 
1l' = pei0, where p is the degree of order and is its phase, and meas- 
ure the degree of stress by the relative lateral displacement, zd;,,,i of the 
walls (Fig. 1). The quantity T = 27rza;,l/rn, where rn is the smectic layer 
thickness, is the change in phase between points which would lie opposite 
to each other in the bookshelf geometry. We shall find different behaviour 
depending on whether the ratio of the cell thickness to  the smectic correla- 
tion length l / (  is much greater than or much less than unity, with a sharp 
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LAYER SLIPPING IN SHEARED SMECTIC A CELLS [425]/18 1 

Figure '2: (a) ,  ( h )  Energetically rquivalent tilted layers for T = h. ( r )  
Misrnatrhed layers where thc phase differencr of +n and - A  are inclistin- 
guishable. 

crossover between the two rkgimes. 
We find that for extremely small shears, --R 5 7 5 n, the layers will 

tilt  in order to connect between the surfaces, resulting in an increase in the 
curvat,iire free energy. In order to minimize this curvature free enrrgy the 
smectic liquid crystal may redlice it.s order parameter in the hulk of the 
system. 

When the smcctic layers at the cell surfaces are completely rnisinntrhed 
i.c. exactly out of phase, there are two energetically equal layer configur- 
ations. The layer at one surface is positioned exactly hetween two layers 
at the opposite surface arid may join to either one. The crucial question is 
whether these states are physically distinct. 

If they are different (Fig. Z(a) and (b)) ,  then a.~ the amount, of shear is 
increased through A the sheared state becomes a metastable state, and the 
previously stable free energy branch is extended into a metastaMe region. 
We shall refer t.0 this statc as supershear. Transforming from Fig. 2(a) t o  
( b )  irivolves breaking up or melting the layer structure. 

AII  a.lternative scenario is illustrated in Fig.Z(c), in which the phase 
difference of + A  and - A  are identical. The systcm melts and the phase is 
undrfined a t  the centre of the cell. At, larger shear rcverse tilt layers reform 
with a phase differencr a.cross the sample hetween - A  and 0 . 

The first scrnario occurs for thick and the second for thin (:ells and a t  
a. crit,ical cell thickness 1 = 1, the behavioiir changes. For very thick films 
I / f  >> I ,  t,here will be many metasta.hle supcmheared sta.tes for a given 
T .  The  loss of  st.ability of the highest. cmergy supershcared state moves t.lie 

system t.o t.he next, state down in energy. 
In the following section we shall develop a matticmatical formalism to 

describc! t,he physical ideas presented in this section. 
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TI1 EOR ETIC A L MOD EL 

The 1,andaii-dr Chries  free energy of the smectic liquid crystal may be 
written 

b 
F =  dr n ~ @ ~ ' + ~ ~ @ ~ 4 + ~ ~ ~ ~ ( n . V - z ~ / ) @ ~ ~ + ~ A ~ ( n  x V)ql '  ( I )  

Minimization of the first two terms i n  ( I )  leads to the bulk smectic order 
pararrieter modulus, pC = ( - n / b ) ' / *  and stability of the smectic phase re- 
quires that. R < 0 and 6 > 0. I n  equation (1 )  the 711 term is associated 
with layer dilations whilst the yA term is associated with departures of the 
director from t,he Cinectic riormal. The last two terms represent the rlnstic 
energy of distortions to the director n within the smectic layer. 

The smrctic. A material is placed in a cell with fiat walls at  z = 0 a.nd 
: = 1 (Fig. I ) .  We choose boundary conditions that give a homogeneoris 
alignment of the direct.or: n ( z  = 0) = n(z = 1) = k, and fix t,he smectic 
order parameter such that the phase, @, is strongly anchored a t  the surface 
and the modulus, p, remains at  the bulk equilibrium value: @(= = 0) = 

It, will bc iisefiil 1.0 para.meterize the order para.meter in the following 
/ J c P i q r .  @ ( Z  = 1 )  = p,C1(4z+r ) .  

way. 

q ( J ,  = p(z)eiW~.4 = p ( z ) e i ( v + W )  = 4 ( - )  , .I f!:v ' (2) 

where $( :) = p( : )F'~( ' ) .  This parameterization separates out the explicit, 
.,-dependent layer behaviour, given by @~(.r) = yx, from the shear-induced 
variation across the cell, given by d ( z )  . The @ houndary conditions call 

now Ic. rewrit,t.en as: d?(z = 0) = p c ,  4 ( z  = 1) = pCelT. Thus the pliase b(z) 
ranges from 0 to r across the cell, though of course layer slippage may allow 
t,he pliaxr to w r y  bctween 0 and r f 2nn where n is an iiitrger. I n  this way 
the free energy may now t)t. writt.en as a funct,ional of / J ( z )  and +(:) rather 
t,hall a. 

Wr will assiiiiir t.hat layer compression is t-nergrtically iinfavourablr 
romparctl 1.0 other forms of distortion within the liquid cryst.al (i.e. 711 is 
very large compared to all ot,her energy coefficients). Tliereforcl the dircct.or 
is prevrrit,ed froin rotating wit,h the layer sirice the layers would then have 
t,he wrong thickriess along tlir s tlirertion. 'This implies that, n = x. 

IJsing the nori-climensionalisatioris. Zi, = @//J?? r = p / / ~ ? .  t = ://. 
d = 1 / ( ,  p = (6 / (21u ' ) )F ,  where ( = ( ~ l / l a [ ) ' / '  is t,lir smert,ic correlation 
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LAYER SLIPPING IN SHEARED SMECTIC A CELLS 

length, the frrc energy becomes, 

[427]/183 

whrre thr tildes have been dropped and derivatives with respect to z are 
denoted by primes. With the abovr non-dimensionalisation the boundary 
conditions arc r(0) = 1, 4(0) = 0 arid r ( l )  = 1, 4 4 1 )  = T .  

Minimization of the free energy (3) Icads to the Euler-Lagrange equa- 
tions: 

We now have two control parameters, the nondimensional thickness d 
a.ritl the  shear T .  When d is small, the (I - r2 )2  term iri  (3) can be ignored 
so that  changes i n  {,he smectic amplitude r are not energetically expensive 
and smect,ic melting can occur i n  tlie center of the sample. For large d ,  r is 
constrained to be close to 1 and the system now prcfers changes in 4, i.e. 
layer tilting. 

Equations (4 )  and ( 5 )  are in fact the time-independent Ginzburg- 
Landau equations arid ca.n be used to  describe a vast array of nonlinear 
phenomena such as Rayliegh-Benard convection, Taylor-Coiiette flow, reac- 
tion diffusion systems, nonlinear optics, superflriidity, combustion and other 
liquid crystal systems (see the references contained in [7]). The analogies 
bctwren such systems and ours are therefore strong. Subsequently. these 
analogies will be extremely useful in suggesting the mechanism of the dy- 
namics of layer slipping. 

In t,lw following scctiori w r  solve the above governing equations for two 
sets of paramcter valiies i n  ordw t,o drinonstmte the t.wo kinds of behaviorir 
that  t.his systrrn exhibits. as discussed in the previous s e d o n .  A dctailed 
nunirrical analysis of the system for all parameter valucs has bwri c-arrietl 
out and is t,o he published We are also able to obtain many 
arialyt.iral rcsii1t.s for certain key quantities such as the critical thickness and 
t,he critical shear at, which melting of the layers occurs, as a furict.ion of cell 
i.hickiirss. However, we will also leave t,his analysis for the more dct.ailed 
paper. 

NIrRIEHI('.AL KESIJLTS 

We solve rqiiations ( 4 )  a d  ( 5 )  sribjert to the above boundary contlitioris 
(using the ririmeriral continuation package A1JTOY7[8]) for two values of thr  
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OL 1 
-3 -2 - 1  0 1 2 3 

W) 

Figure 3: Numerical solutions for d = 0.1. (a) Energy, F, versus shear, 7. 
(b) The density modulation amplitude, r ( z ) .  (c) The density modulation 
phase, 4 ( z )  (in radians). 

cell thickness, d = 0.1 and d = 10.0, and investigate the behaviour as the 
amount of shear T is varied. 

Fig. 3 shows the free energy versus shear and the r ( z )  and 4 ( z )  solu- 
tions for d = 0.1. As shear increases the phase d ( z )  is almost linear across 
the cell whilst the order parameter r decreases in the centre of tho cell. As 
the shear approaches n the phase change across the cell concentrates in  the 
centre. The large value of dd/dz favours melting of the smectic layers i.e. a 
reduction of the order parameter r ( z ) .  At T = A the phasc and the derivat- 
ive of r ( z )  are discontinuous and r(z  = 0.5) = 0. At this point the energy 
is a maximum. For T > n this process is reversed it5 the system relaxes to 
the energy minimum at T = 2n. 

For d = 10.0 the behaviour has changed significantly (Fig. 4). For 
shear values 0.458 < T < 5.825 there are three solutions, two stable a.nd 
one unstal)le. The stable solutions occur along branches I ,  2 whilst. the 
iinstablc along branch 3. At two limit points the unstable solution and 
a stahle solution mcct arid annihilate each other so that in  the regions 
0.0 < T < 0.458 and 5.825 < T < 2n there exists only one solution. At 
t,he point r = x the two stable hranches have the same energy whereas for 
0.458 < T < n branch 1 is the global minimum and for A < T < 5.825 branch 
2 is the global minimum. As the cell is sheared past T = n the system will 
remain on branch 1 (even though this state is not the global minimumstate) 
until either defects or thermal fluctuations perturb the system or the limit 
point is reachcd a t  which point the system relaxes into the reverso tilt. state 
on branch 2. 
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LAYER SLIPPING IN SHEARED SMECTlC A CELLS [429]/185 

(a) 
-0.1 

-0.14 

F 
-0.18 

-0.22 

-0.26 
1 2 3 4 5 6  

7 

(b) $:r, 0.6 

0.4 

0.2 

() 0.2 0.4 0.h 0.8 1 
2 

Figure 4: (a) Energy, F ,  versus shear, T ,  for d = 10.0. (b)  solutions for 
r ( z )  and (c) 4 ( z )  011 all three branches for d = 10.0 and shear values, 
T = 0.458, K, 5.825. The symbols in (a) correspond to the symbols in (b )  
and ( c ) .  

Figure 4 also shows thc r(z) arid d ( z )  solutions at various points on 
branches 1-3. Solutions on branch 1 and 2 are characterised by almost linear 
shear across the cell with a small amount of melting in r ( z )  whilst solutions 
on branch 3 are'characterised by concentrated shear in the middle of the 
cell and a large amount of melting. 

Since Fig. 4 is repeated periodically, for T > ?T, the shear stress in a 
linearly sheared cell would periodically increase and decrease as the system 
periodically followed branch 1 then fell to a relaxed state on branch 2. 

The bchaviour of the system for values of d other than 0.1 and 10.0 
may be characterised by investigating how the two limit points vary as d is 
changed (Fig. 5). For d < dc = 3.5 the behaviour is essentia.lly the same 
as that of d = 0.1 and IIO limit points rxist. For d > d, the behaviour 
is similar t o  that of d = 10.0, howevcr as d increases the two limit poirits 
divrrge (linrarly) and eventually movr out. of t,he region 0 < T < 2n. For 
large d. branrhes will overlap and there will exist increasingly more stablr  
arid iinstablr solutions for m y  fixed T .  Fig. 5(b) shows the crossing of the 
limit point lori. For all points i n  a diamond shaped region the nrimbcr of 
st,ahle and unstahle solutions is fixed. Fig. 5(b) can thcrcfore be thought. of 
as a ptiaw diagram. Whilst diere will be only one global energy minimizer 
at, rach point ( T ,  d )  there may be many metastable solutions which are 
locally stable. 

is typically of 
the order of the size of a few molecules. For an experirncntal cell dimension 

In the nlnectic A phase, the smcctic correlation length 
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-0.1 

-0.12 

F-0.14 

-0.16 

-0.18 

-0.2 

-0.22 

-0.24 
I 

-5 0 5 10 15 
z 

0 10 20 30 40 50 
I 

Figure 5:  (a) The limit points formed at d = 3.50, T = K diverge as d 
incrrme.. . (h)  The system symmetry implies that limit points are formed at  
the points d = 3.50, T = fn, f 3 n ,  f 5 n . .  . and as d increases the limit points 
diverge and eventually cross aim. The label &/iU denotes the number of 
stable and unstable solutions in each region. (c) Energy versus shear for 
d = 100.0, only the stable solutions are shown. There are now many stable 
solutions for each shear value. 

1-IOpm the nondimensional cell width is then d - 100 - 1000 and so we 
expect many metastable solutions. 

For d = 100, the energy versus shear plot is shown in Fig. 5(c), where 
only the stable solutions are shown for simplicity. At this parameter value 
the limit point of branch 1 occurs at a shear of 7 = 56.69, and for each 
shear value T there are indeed many stable solutions. 

Although charartrristic values of d are large, we note that ( is expec- 
ted to increase dramatically close to it continuous nematic-smrctir A phase 
transition. In this region d may approach d, and some of the interesting 
structure near to this critical point may he easier to  obsrrve. 

DYNAMICS OF LAYER SLIPPING 

The t.heory in this paper is ciiiii.4-static and does not model the dynamics of 
the breakdown of supershear. Nevertheless our investigation of the quasi- 
st,atic t,hc?ory is a'hle 1.0 give a qualitative picture of the dynamic process. At 
this point it is helpful to consider the system in terms of the real and ima- 
ginary component,s of the smectic order parameter [Rl (r )  = r ( z )  C O S ( ~ ( Z ) )  
and & ( z )  = r(z)sin(4(:))] instead of thc iisiial amplitude and phase, p(:)  
a.nd d(z).  Thc solutions to the equations may then he thought of a. tmjnct- 
ories in the complex plane. The boundary conditions of the problem insist 
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LAYER SLIPPING IN SHEARED SMECTIC A CELLS [43 l]/l87 

(a) (C) (d) 

*&(h&- -+- .+- 
Figure ti: The dynamic process as the system relaxcs from the sripershrared 
state at the limit, poirit. (a) 'I'lir iririermost loop of thc original trajoctory 
encircling the origin of the complex plane. (b)  The loop starts to collapse. 
(c)  The  t,raject,ory passes through the origin as the loop disappears at a 
cusp. (d )  The new stable orbit now has one less loop. 

t,hat each solution starts a t  the point (1, 0), which corresponds to r = I .  
= 0, and finishes at the point (COS(T), sin(T)), which corrrsponds t o r  = I ,  

(b = 7. The larger 7 the more times the trajectory winds around the origin. 
I f  the  trajectory passes through the origin the amplitude r has gone to zero 
and at that point the smectic layers have melted. As these h j ec to r i e s  loop 
around the origin they spiral inwards, as {J decreilses, and then outwards i n  
a symmetrical way. 

As t,he limit point is reached the innermost loop of the trqjectory 
collapses and thc other loops readjust themselves (Fig. 6). The position 
closest t.o the origin, P, approaches the origin and passes through the origin 
as the loop disappears at a cusp. The original trajectory has now decayed 
to a new stable trajectory with one less loop around the origin. Thus ea.ch 
layer has  lost a. pham of 'Ln and the  layers have slipped back to a more 
relaxed configiirat.ioii. 

'Thr details of t,his description will depend on the tlyria.mical structure 
of t,he equations governing smectic A layer motion. A simple t-ime-dependcnt 
version of equations (4 )  and (5)  which allows only for dissipative behavioiir 
is t.he Ginzburg-Landau equation. The dynamics of the 2~ reduction in 
pliasc. sceii ahove has previously been studied in deta.il['-"l. However, the 
full rquations are inrvitably more complicated and include smectic A hy- 
drodynamics in t.he presence of layer conservation. Wha.t.ever tlirsc det.aiIs. 
thcy will  not al1.e.r t,he stable qualitative dynamical features discussed herc. 

DIS('I'SSI0N 

In t,tiis paper we have presented a summary of our analysis of slirar-induced 
indt.ing i n  smectic A liquid crystals. The calculations rrvcal a coinplex 
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phase diagram described by the two system control parameters, the nondi- 
mensionalised gap width d and the imposed shear T .  

We have found that there is a critical value of the cell thickness d,  
at which the behaviour changes. For d 5 d, the layers continuously melt, 
and reform as the shear increases through nr for odd n. For d > d, the 
hehaviour is significantly different. It is now possible to supershear the 
layers into a metastable state with 171 > A until a critical value of the shear 
Tc(d) .  The critical shear value is linear with respect to d (i.e. ~ , . ( d )  + y,d) 
and for large values of d, there will be a large number of metastable states. 
When the system reaches the critical shear value the system relaxes into 
the next highest free energy metastable state reducing the phase by 2n and 
melting at, the centre of the cell a8 it relaxes. 

The experiments of Cagnon and Durandl’l showed that the response 
of a sheared smectic A in the bookshelf geometry had two components. The 
major component was a linear hehaviour superposed on which was a smaller 
periodic response. Linear behaviorir is just what is expected for T < T ~ ;  the 
stored free energy is proportional to T’ just as in Hooke’s law, as can he 
seen in Fig. 5(c). By contrast, periodic behaviour is what is expected for 
T N T ~ ,  for now the system reaches a critical value, relaxing, increasing to 
its critical value, relaxing and so on. 
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