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Periodic Layer Slipping in a Sheared
Smectic A Cell

N.J. MOTTRAM?, T. J. SLUCKIN®, S. J. ELSTON® and
M. J. TOWLER®

ADepartment of Engineering Science, University of Oxford, Parks Road, Oxford,
0X1, 3PJ, UK, °F aculty of Mathematical Studies, University of Southampton,
Highfield, Southampton SO17 1BJ, UK and ®Sharp Laboratories of Europe Ltd.,
Edmund Halley Road, Oxford Science Park, Oxford 0X4 4GA, UK

In this paper we present a theoretical analysis of shear induced melting in smectic A liquid
crystals. We have performed a detailed numerical analysis and find that for a range of param-
eter values a first order transition, from a supersheared state to a more relaxed state, is period-
ically encountered as the total shear is increased. This first order transition involves the
melting and reformation of the smectic layers. In this paper we present a summary of this
analysis while a more detailed analysis, including analytic expressions for certain critical
quantities, is presented elsewhere.
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INTRODUCTION

In the smectic A phase there exists one-dimensional positional ordering in
the form of a periodic molecular density function, which forms a layered
structurelll, In equilibrium, the unconstrained liquid crystal layers are uni-
formly separated by a distance 27 /¢, where q is the preferred wave number
of the density fluctuations. However, in the presence of distorting forces,
the layer structure can be significantly different. In this paper we discuss
one situation in which this layer structure may be distorted.

We consider a smectic A liquid crystal sample initially in the bookshelf
geometry, in which the director is aligned in the same uniform direction on
each surface of a cell (Fig. 1). Although this bookshelf configuration may
be disturbed hy external factors such as an electric field, applied stresses
and alterations in the temperature, such perturbations typically do not alter
the smectic layer configuration closc to the surfaces. Cagnon and Durand!?
have experimentally investigated this interaction between the cell surfaces
and the smectic layers. In a cell filled with a smectic A liquid crystal,
one wall was moved laterally with respect to the other and they found
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Figure 1: Cell configuration: Smectic A material is sandwiched between
glass plates at z =/ and z = 0 where the director is aligned homogeneously.
The shear force applied to the upper glass plate induces layer distortion.

periodic discontinuities superimposed on a monotonic, background stress,
which were interpreted as layers slipping with respect to the walls. These
results enabled Cagnon and Durand to estimate the energy associated with
the surface-memory-induced layer anchoring at the walls.

This paper aims to examine the general question of the interplay
between the energetically favorable bookshelf geometry and an applied shear
stress which distorts it. Elston and Towler® have previously shown that
the presence of a large inter-wall shear can lead to a significant reduction in
the smectic order parameter in the middle of the cell, and sufficiently large
shear can, under some circumstances, destabilize the deformed bookshelf
geometry. In this paper we report on calculations which extend this ana-
lysis to find a complex structure of stable, metastable and unstable states
and describe the associated transitions between them. A more complete
account of this work is presented elsewherel4l.

PHYSICAL UNDERSTANDING

In this section we give a brief overview of the physics involved in the model
we consider. For simplicity we suppose that the layer anchoring is infinite
and thus in the presence of shear the layers are forced, initially, to follow
the moving surfaces (Fig. 1).

We denote the smectic order parameter by the complex variablel®,
¥ = pe'®, where p is the degree of order and & is its phase, and meas-
ure the degree of stress by the relative lateral displacement, Zgi,p of the
walls (Fig. 1). The quantity 7 = 27Zispi/m, where m is the smectic layer
thickness, is the change in phase between points which would lie opposite
to each other in the bookshelf geometry. We shall find different behaviour
depending on whether the ratio of the cell thickness to the smectic correla-
tion length I/¢ is much greater than or much less than unity, with a sharp



Downloaded by [University of Haifa Library] at 08:52 16 August 2012

LAYER SLIPPING IN SHEARED SMECTIC A CELLS [425V/181

(a) (b (©)

[ 1 C | — 1]

Figure 2: (a), (b) Energetically equivalent tilted layers for 7 = +x. (c)
Mismatched layers where the phase difference of +7 and —n are indistin-
guishable.

crossover between the two régimes.

We find that for extremely small shears, —7 < 7 < , the layers will
tilt in order to connect between the surfaces, resulting in an increase in the
curvature free energy. In order to minimize this curvature free energy the
smectic liquid crystal may reduce its order parameter in the bulk of the
system.

When the smectic layers at the cell surfaces are completely mismatched
i.e. exactly out of phase, there are two energetically equal layer configur-
ations. The layer at one surface is positioned exactly between two layers
at the opposite surface and may join to either one. The crucial question is
whether these states are physically distinct.

If they are different (Fig. 2(a) and (b)), then as the amount. of shear is
increased through 7 the sheared state becomes a metastable state, and the
previously stable free energy branch is extended into a metastable region.
We shall refer to this statc as supershear. Transforming from Fig. 2(a) to
(b) involves breaking up or melting the layer structure.

An alternative scenario is illustrated in Fig.2(c), in which the phase
difference of 4+ and —= are identical. The system melts and the phase is
undefined at the centre of the cell. At larger shear reverse tilt layers reform
with a phase difference across the sample between —7 and 0 .

The first scenario occurs for thick and the second for thin cells and at
a critical cell thickness [ = [, the behaviour changes. For very thick films
[/€ > 1, there will be many metastable supersheared states for a given
7. The loss of stability of the highesi energy supersheared state moves the
system to the next state down in energy.

In the following section we shall develop a mathematical formalism to
describe the physical ideas presented in this section.
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THEORETICAL MODEL

The Landau-de Gennes free energy of the smectic liquid crystal may be
written aslfl

, b . ) , . ,
F= /d!' [“|‘l’|2+ ;I‘I’|4+‘7n|(n'V—"I)‘l’ll*"hl(n x V) (1
L. I B . n2
+§l\”(V~n) +§l\33(nx(VXn)) .

Minimization of the first two terms in (1) leads to the bulk smectic order
parameter modulus, p. = {(~a/b)/? and stability of the smectic phase re-
quires that @ < 0 and b > 0. In equation (1) the 4 term is associated
with layer dilations whilst the v; term is associated with departures of the
director from the ginectic normal. The last two terms represent the elastic
energy of distortions to the director i within the smectic layer.

The smectic A material is placed in a cell with flat walls at =z = 0 and
z = [ (Fig. 1). We choose boundary conditions that give a homogeneous
alignment of the director: n(z = 0) = ia(z = !) = X, and fix the smectic
order parameter such that the phase, ®, is strongly anchored at the surface
and the modulus, p, remains at the bulk equilibrium value: ¥(z = 0) =
pee®, W(z = 1) = p,et8747),

It will be useful to parameterize the order parameter in the following
way,

U(a,2) = pl2)e®E) = p(2)eeHED) = y(z)ei, )

where (z) = p(z)e). This parameterization separates out the explicit
r-dependent layer behaviour, given by ®q(x) = gz, from the shear-induced
variation across the cell, given by #(z) . The ¥ boundary conditions can
now be rewritten as: ¥(z = 0) = p,, ¢(z = {) = p.¢'". Thus the phase ¢(z)
ranges from 0 to 7 across the cell, thongh of course layer slippage may allow
the phase to vary between 0 and 7 £ 2n7 where n is an integer. In this way
the free cnergy may now be written as a functional of p(z) and @(z) rather
than W.

We will assume that layer compression is energetically unfavourable
compared to other forms of distortion within the liquid crystal (i.e. ) is
very large compared to all other energy coefficients). Therefore the director
is prevented from rotating with the layer since the layers would then have
the wrong thickness along the r direction. This implies that i = x.

Using the non-dimensionalisations, 1/-: = /pes T = plpe. 3= 2L
d =1/ I = (b/(2la))F, where £ = (y./|a])!/* is the smectic correlation
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length, the free energy becomes,

e[l )

where the tildes have been dropped and derivatives with respect to = are
denoted by primes. With the above non-dimensionalisation the boundary
conditions are r(0) = 1, ¢(0) =0 and r(1) = 1, ¢(1) = 7.

Minimization of the free energy (3) leads to the Euler-Lagrange equa-
tions:

™+ dir(l =r?) +r¢? =0, (4)
() =o0. (5)

We now have two control parameters, the nondimensional thickness d
and the shear 7. When d is small, the (1 — r?)? term in (3) can be ignored
so that changes in the smectic amplitude r are not energetically expensive
and smectic melting can occur in the center of the sample. For large d, r is
constrained to be close to 1 and the system now prefers changes in ¢, i.e.
layer tilting.

Equations (4) and (5) are in fact the time-independent Ginzburg-
Landau equations and can be used to describe a vast array of nonlinear
phenomena such as Rayliegh-Benard convection, Taylor-Couette flow, reac-
tion diffusion systems, nonlinear optics, superfluidity, combustion and other
liquid crystal systems (see the references contained in [7]). The analogies
between such systems and ours are therefore strong. Subsequently, these
analogies will be extremely useful in suggesting the mechanism of the dy-
namics of layer slipping.

In the following section we solve the above governing equations for two
sets of parameter values in order to demonstrate the two kinds of behaviour
that this system exhibits, as discussed in the previous section. A detailed
numerical analysis of the system for all parameter values has been carried
out and is to be published elsewherel!. We are also able to obtain many
analytical results for certain key quantities such as the critical thickness and
the critical shear at which melting of the layers occurs, as a function of cell
thickness. However, we will also leave this analysis for the more detailed
paper.

NUMERICAL RESULTS

We solve equations (4) and (5) subject to the above boundary conditions
(using the numerical continuation package AUTO97®)} for two values of the
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Figure 3: Numerical solutions for d = 0.1. (a) Energy, F, versus shear, 7.
(b) The density modulation amplitude, r(z). (c) The density modulation
phase, ¢(z) (in radians).

cell thickness, d = 0.1 and d = 10.0, and investigate the behaviour as the
amount of shear 7 is varied.

Fig. 3 shows the free energy versus shear and the r(z) and ¢(z) solu-
tions for d = 0.1. As shear increases the phase ¢(z) is almost linear across
the cell whilst the order parameter r decreases in the centre of the cell. As
the shear approaches 7 the phase change across the cell concentrates in the
centre. The large value of d¢/dz favours melting of the smectic layers i.e. a
reduction of the order parameter r(z). At + = v the phase and the derivat-
ive of r(z) are discontinuous and r(z = 0.5) = 0. At this point the energy
is a maximum. For 7 > 7 this process is reversed as the system relaxes to
the energy minimum at 7 = 27,

For d = 10.0 the behaviour has changed significantly (Fig. 4). For
shear values 0.458 < 7 < 5.825 there are three solutions, two stable and
one unstable. The stable solutions occur along branches 1, 2 whilst the
unstable along branch 3. At two limil points the unstable solution and
a stable solution mect and annihilate each other so that in the regions
0.0 < 7 < 0.458 and 5.825 < 7 < 2w there exists only one solution. At
the point 7 = 7 the two stable branches have the same energy whereas for
0.458 < 7 < = branch | is the global minimum and for 7 < r < 5.825 branch
2 is the global minimum. As the cell is sheared past 7 = 7 the system will
remain on branch 1 (even though this state is not the global minimum state)
until either defects or thermal fluctuations perturb the system or the limit
point is reached at which point the system relaxes into the reverse tilt state
on branch 2.
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Figure 4: (a) Energy, I, versus shear, 7, for d = 10.0. (b) solutions for
r{z) and (c) ¢(z) on all three branches for d = 10.0 and shear values,
T = 0.458, 7, 5.825. The symbols in (a) correspond to the symbols in (b)
and (c).

Figure 4 also shows the r(z) and ¢(z) solutions at various points on
branches 1-3. Solutions on branch 1 and 2 are characterised by almost linear
shear across the cell with a small amount of melting in r(z) whilst solutions
on branch 3 are characterised by concentrated shear in the middle of the
cell and a large amount of melting,.

Since Fig. 4 is repeated periodically, for 7 > 7, the shear stress in a
linearly sheared cell would periodically increase and decrease as the system
periodically followed branch 1 then fell to a relaxed state on branch 2.

The behaviour of the system for values of d other than 0.1 and 10.0
may be characterised by investigating how the two limit points vary as d is
changed (Fig. 5). For d < d. = 3.5 the behaviour is essentially the same
as that of d = 0.1 and no limit points exist. For d > d. the behaviour
is similar to that of d = 10.0, however as d increases the two limit points
diverge (lincarly) and eventually move out of the region 0 < 7 < 27. For
large d, branches will overlap and there will exist increasingly more stable
and unstable solutions for any fixed 7. Fig. 5(b) shows the crossing of the
limit point loci. For all points in a diamond shaped region the number of
stable and unstable solutions is fixed. Fig. 5(b) can thercfore be thought of
as a phase diagram. Whilst there will be only one global energy minimizer
at each point (7, d) there may be many metastable solutions which are
locally stable.

In the smectic A phase, the smectic correlation length £ is typically of
the order of the size of a few molecules. For an experimental cell dimension
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Figure 5: (a) The limit points formed at d = 3.50, 7 = 7 diverge as d
increases. (b) The system symmetry implies that limit points are formed at
the points d = 3.50, 7 = £m,+37, £5n7... and as d increases the limit points
diverge and eventually cross over. The label i,/i, denotes the number of
stable and unstable solutions in each region. (c) Energy versus shear for
d = 100.0, only the stable solutions are shown. There are now many stable
solutions for each shear value.

1-10um the nondimensional cell width is then d ~ 100 — 1000 and so we
expect many metastable solutions.

For d = 100, the energy versus shear plot is shown in Fig. 5(c), where
only the stable solutions are shown for simplicity. At this parameter value
the limit point of branch 1 occurs at a shear of 7 = 56.69, and for each
shear value T there are indeed many stable solutions.

Although characteristic values of d are large, we note that £ is expec-
ted to increase dramatically close to a continuous nematic-smectic A phase
transition. In this region d may approach d. and some of the interesting
structure near to this critical point may be casier to observe.

DYNAMICS OF LAYER SLIPPING

The theory in this paper is quasi-static and does not model the dynamics of
the breakdown of supershear. Nevertheless our investigation of the quasi-
static theory is able to give a qualitative picture of the dynamic process. At
this point it is helpful to consider the system in terms of the real and ima-
ginary components of the smectic order parameter {R,(z) = r(z) cos(¢(z))
and Ry(z) = r(z)sin(¢(z))] instead of the usual amplitude and phase, p(z)
and &(z). The solutions to the equations may then be thought of as traject-
ories in the complex plane. The boundary conditions of the problem insist



Downloaded by [University of Haifa Library] at 08:52 16 August 2012

LAYER SLIPPING IN SHEARED SMECTIC A CELLS [431]/187

(a) (h) (c) (d)

N N
=

Figure 6: The dynamic process as the system relaxes from the supersheared
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state at the limit point. (a) The innermost loop of the original trajectory
encircling the origin of the complex plane. (b) The loop starts to collapse.
(¢) The trajectory passes through the origin as the loop disappears at a
cusp. (d) The new stable orbit now has one less loop.

that each solution starts at the point (1, 0), which corresponds to r = 1,
¢ = 0, and finishes at the point (cos(r), sin(7)), which corresponds tor = 1,
¢ = 7. The larger 7 the more times the trajectory winds around the origin.
If the trajectory passes through the origin the amplitude r has gone to zero
and at that point the smectic layers have melted. As these trajectories loop
around the origin they spiral inwards, as p decreases, and then outwards in
a symmetrical way.

As the limit point is reached the innermost loop of the trajectory
collapses and the other loops readjust themselves (Fig. 6). The position
closest to the origin, P, approaches the origin and passes through the origin
as the loop disappears at a cusp. The original trajectory has now decayed
to a new stable trajectory with one less loop around the origin. Thus each
layer has lost a phase of 27 and the layers have slipped back to a more
relaxed configuration.

The details of this description will depend on the dynamical structure
of the equations governing smectic A layer motion. A simple time-dependent
version of equations (4) and (5) which allows only for dissipative behaviour
is the Ginzburg-Landau equation. The dynamics of the 27 reduction in
phase scen above has previously been studied in detail® ', However, the
full equations are incvitably more complicated and include smectic A hy-
drodynamics in the presence of layer conservation. Whatever these details,
they will not alter the stable qualitative dynamical features discussed here.

DISCUSSION

In this paper we have presented a summary of our analysis of shear-induced
melting in smectic A liquid crystals. The calculations reveal a complex
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phase diagram described by the two system control parameters, the nondi-
mensionalised gap width d and the imposed shear r.

We have found that there is a critical value of the cell thickness d,
at which the behaviour changes. For d < d. the layers continuously melt
and reform as the shear increases through nm for odd n. For d > d, the
behaviour is significantly different. It is now possible to supershear the
layers into a metastable state with || >  until a critical value of the shear
7.(d). The critical shear value is linear with respect to d (i.e. 7.(d) = v.d)
and for large values of d, there will be a large number of metastable states.
When the system reaches the critical shear value the system relaxes into
the next highest free energy metastable state reducing the phase by 27 and
melting at the centre of the cell as it relaxes.

The experiments of Cagnon and Durand® showed that the response
of a sheared smectic A in the bookshelf geometry had two components. The
major component was a linear behaviour superposed on which was a smaller
periodic response. Linear behaviour is just what is expected for 7 < 7.; the
stored free energy is proportional to 72 just as in Hooke’s law, as can be
seen in Fig. 5(c). By contrast, periodic behaviour is what is expected for
T ~ 7., for now the system reaches a critical value, relaxing, increasing to
its critical value, relaxing and so on.
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